Self-supervised ARTMAP

نویسندگان

  • Gregory P. Amis
  • Gail A. Carpenter
چکیده

Computational models of learning typically train on labeled input patterns (supervised learning), unlabeled input patterns (unsupervised learning), or a combination of the two (semi-supervised learning). In each case input patterns have a fixed number of features throughout training and testing. Human and machine learning contexts present additional opportunities for expanding incomplete knowledge from formal training, via self-directed learning that incorporates features not previously experienced. This article defines a new self-supervised learning paradigm to address these richer learning contexts, introducing a neural network called self-supervised ARTMAP. Self-supervised learning integrates knowledge from a teacher (labeled patterns with some features), knowledge from the environment (unlabeled patterns with more features), and knowledge from internal model activation (self-labeled patterns). Self-supervised ARTMAP learns about novel features from unlabeled patterns without destroying partial knowledge previously acquired from labeled patterns. A category selection function bases system predictions on known features, and distributed network activation scales unlabeled learning to prediction confidence. Slow distributed learning on unlabeled patterns focuses on novel features and confident predictions, defining classification boundaries that were ambiguous in the labeled patterns. Self-supervised ARTMAP improves test accuracy on illustrative low-dimensional problems and on high-dimensional benchmarks. Model code and benchmark data are available from: http://techlab.eu.edu/SSART/.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Default ARTMAP 2 - Technical Report

Default ARTMAP combines winner-take-all category node activation during training, distributed activation during testing, and a set of default parameter values that define a ready-to-use, general-purpose neural network system for supervised learning and recognition. Winner-take-all ARTMAP learning is designed so that each input would make a correct prediction if re-presented immediately after it...

متن کامل

Fuzzy ARTMAP based electronic nose data analysis

Ž . The Fuzzy ARTMAP neural network is a supervised pattern recognition method based on fuzzy adaptive resonance theory ART . It is Ž a promising method since Fuzzy ARTMAP is able to carry out on-line learning without forgetting previously learnt patterns stable . Ž . learning , it can recode previously learnt categories adaptive to changes in the environment and is self-organising. This paper ...

متن کامل

First Break Detection in Seismic Reflection Data with Fuzzy ARTMAP Neural Networks

In this paper we investigate the use of a supervised, but self-organizing, Adaptive Resonance Theory type of neural network (Fuzzy-ARTMAP), for first break picking in seismic reflection data. First break picking is the accurate location of the leading energy pulse received by a geophone in response to a seismic shot. The performance of Fuzzy-ARTMAP is compared to our previous work with multi-la...

متن کامل

A New Approach to Simplified Fuzzy ARTMAP

A fuzzy ARTMAP system is a system for incremental supervised learning of recognition categories and multidimensional maps in response to arbitrary sequence of analog or binary input vectors. The original fuzzy ARTMAP system incorporates two fuzzy ART modules and an inter-ART module. Many different approaches have been proposed to modify fuzzy ARTMAP systems. In this paper, we proposed a new app...

متن کامل

Adaptive resonance associative map

-This article introduces a neural architecture termed Adaptive Resonance Associative Map ( ARAM) that extends unsupervised Adaptive Resonance Theory (ART) systems for rapid, yet stable, heteroassociative learning. ARAM can be visualized as two overlapping ART networks sharing a single category field. Although ARAM is simpler in architecture than another class o f supervised ART models known as ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural networks : the official journal of the International Neural Network Society

دوره 23 2  شماره 

صفحات  -

تاریخ انتشار 2010